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ABSTRACT 

In this thesis we examine the performance of simulated annealing (SA) on various response 

surfaces. The main goals of the study are to evaluate the effectiveness of SA for stochastic 

optimization, develop modifications to SA in an attempt to improve its performance, and to 

evaluate whether artificially adding noise to a deterministic response surface might improve 

the performance of SA.  SA is applied to several different response surfaces with different 

levels of complexity.  We first experiment with two basic approaches of computing the 

performance measure for stochastic surfaces, constant sample size and variable sample size.  

We found that the constant sample size performed best.  At the same time we also show that 

artificially adding noise may improve the performance of SA on more complex deterministic 

response surfaces.  We develop a hybrid version of SA in which the genetic algorithm is 

embedded within SA.  The effectiveness of the hybrid approach is not conclusive and needs 

further investigation.  Finally, we conclude with a brief discussion on the strengths and 

weaknesses of the proposed method and an outline of future directions. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

The Simulated Annealing (SA) algorithm stands in contrast to other heuristic methods that 

base the acceptance of new solutions during the iterative search process solely on 

improvement or when a decrease in the cost function is achieved. Simulated Annealing will 

accept an increase in the cost function with some probability based on the annealing 

algorithm. The probability of accepting increases in the cost function slowly decreases to 

zero as the temperature declines. Simulated annealing is based on an analogy to a physical 

system which is first melted and then cooled or annealed into a low energy state. Although 

Simulated Annealing is intended for optimization of deterministic problems, it has also been 

applied to stochastic optimization problems. However, there is a lack of practical information 

about the performance of SA when applied to stochastic problems. In this thesis the results of 

a number of empirical studies regarding the performance of SA on stochastic optimization 

problems will be presented. The experiments allowed the authors to make some initial 

evaluation of the general performance of SA to this type of problem and also to examine the 

influence of tuning some of the main parameters of SA. The motivation for the study was the 

desire to learn more about the effect of varying amount of response surface noise on the 

performance of SA. Also, we were able to evaluate whether artificially adding noise to a 

deterministic response surface might improve the performance of SA for deterministic 

optimization problems.   
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The thesis addresses simulation optimization in the context of design problems where 

performance measures or objective functions are stochastic, and examines what makes it 

different from the corresponding deterministic problem.  For the initial empirical studies in 

the thesis we chose to use a very straightforward approach. The basic SA algorithm is 

employed and the measure of performance of a candidate move in the neighborhood of a 

current solution is determined by simply taking a sample average.  For each of the sample 

objective functions selected for testing, first the problem of optimizing the function over 

some range of feasible parameter values when the performance measure is deterministic is 

considered. Then, we analyze the behavior of the simulated annealing algorithm on the same 

functions when their performance measures are artificially changed to stochastic problems.  

We also discuss how the level of noise and sample size used affects the performance of 

simulated annealing.  When dealing with problems with noise we are interested in collecting 

many alternatives that are nearly equally good. One of the contributions of the research is 

giving a clear statement about the effect of the sample size chosen or varying the sample size 

on convergence.   In this thesis, we also propose a hybrid algorithm that combines simulated 

annealing and the genetic algorithm to achieve an improved performance. The hybrid 

algorithm relies on the generation of offspring by embedding parenting. The metropolis 

procedure is performed after crossover and mutation. In our proposed algorithm, the 

offspring chosen as candidates for the annealing process are better, thus convergence to a 

good solution may be improved.  
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1.2 Literature review 

The simulated annealing (SA) optimization algorithm derives its name from the optimization 

process in the energy of a crystalline solid by removing defects in the atomic arrangement. 

Researchers have developed analytical and simulation models to gain insights into the 

connection between this thermodynamic behavior and local search algorithms. SA has been 

extensively applied to deterministic optimization problems and the theoretical basis of the 

algorithm for this application has been known for a number of years. Many instances of 

practical and difficult problems were successfully solved by simulated annealing. The 

effectiveness of SA is attributed to the nature that it can explore the design space by means of 

a neighborhood structure and escape from local minima by probabilistically allowing uphill 

moves controlled by a temperature parameter. 

 

Kirkpatrick realized the similarity between the optimization of combinatorial optimization 

problems and the physical process of annealing (Kirkpatrick et al. 1983). Simulated 

Annealing (SA) became one of the more popular optimization algorithms. Most survey 

articles address the issue of the theoretical application of SA to deterministic optimization 

problems. The popularity of SA has inspired many questions regarding the values of 

parameters that control the algorithm such as how the choice of temperature, cooling 

schedule, and neighborhood affect the convergence of this hill-climbing algorithm. Sullivan 

and Jacobson (2001) studied generalized hill climbing algorithms and their performance. 

They extended necessary and sufficient convergence conditions for simulated annealing. 

Azizi and Zolfaghari (2004) addressed changes in temperature based on the number of 
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consecutive moves showing improvement by comparing two variations of the SA method in 

adaptive temperature control. Rosen and Harmonosky (2005) proposed a simulated 

annealing-based simulation optimization method, which is an asynchronous, team-type 

heuristic. It improved the performance of simulated annealing for discrete variable simulation 

optimization. With the conventional cooling schedule, the probability of transition decreases 

from the beginning of the search to the end. Ameur (2004) found a simple algorithm to 

compute the temperature in SA which is compatible with a given acceptance ratio of bad 

moves. He also provided a convex function for low temperatures and a concave function for 

high temperatures based on a geometric cooling schedule.  

 

During the past two decades, the simulated annealing algorithm has gained wide attention in 

both theoretical and engineering fields, applied most frequently to deterministic problems. 

The original simulated annealing algorithm assumes that the objective function values can be 

evaluated exactly.  However, in many practical problems, the evaluation of the objective 

function values may include some noise.  In real life, the source of noise could come from 

measurement errors, or from the distinction between historic data versus the future data. For 

some cases the value of the objective functions are accurate only to a certain tolerance. The 

first theoretical analysis of simulated annealing applied to solve discrete stochastic 

optimization problems was given by Gelfand and Mitter (1989). They showed that if the 

noise in the estimated objective function values in iteration has the normal distribution with 

zero mean and positive variance, then their procedure converges in probability to the set of 

global optimal solutions provided that the sequence is chosen properly. In 1996, Gutjahr and 
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Pflug (1996) generalized a classical convergence result for the Simulated Annealing 

algorithm to the case where cost function observations are disturbed by random noise. They 

also showed that it converges in probability provided that the variance of normally 

distributed errors decreases at a rate that is significantly faster than the cooling schedule. 

Moreover, they extended their analysis to errors that are more peaked around zero than 

normally distributed errors. 

 

Saul B. Gelfand and Sanjoy K. Mitter (1988) examined the effect of using noisy (i.e. with 

random error) or imprecise measurements (i.e. with deterministic error) of the energy 

differences on tracking the minimum energy state visited by the modified algorithms. When 

implementing the annealing algorithm, it keeps track of the minimum energy state visited by 

the annealing chain up to the current time.  For the modified algorithms, noisy or imprecise 

measurements of the energy differences are used to select the successive states. They also 

showed that under suitable conditions on noise the modified SA still exhibits global 

convergence with probability. Charon and Hudry (1993) suggested adding noise to the SA 

algorithm, or the noising method. Their approach adds random noise initially and then 

gradually reduces the noise to zero in order to perturb the solution space. Gutjahr and Pflug 

(1996) demonstrated the classic convergence results for SA on the case where cost function 

observations are distributed by random noise. However, the computational effort of SA for a 

practical problem is often limited, that is, the convergence condition may not be satisfied. 

Aiming at the non-deterministic property of stochastic optimization problem, Mahmoud H. 

Alrefaei and Sigriin Andraddttir (1999) present a modified simulated annealing algorithm 
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designed for solving discrete stochastic optimization problems. The method is able to find 

global optimal solutions to discrete stochastic optimization problems with the hill climbing 

feature.  The optimal solution is estimated by the different states in terms of the number of 

visits, or by the state with the best average estimated objective function value.  However, the 

method differs from the other simulated annealing algorithms in that it uses a constant (rather 

than decreasing) temperature. They also discussed how both variants can be applied in 

discrete deterministic optimization problems when the objective function values are 

estimated using either transient or steady-state simulation.  

 

Currently, the research on developing effective and robust algorithms applied on stochastic 

optimization problems has become a hot topic in international academic field. Since 

stochastic optimization problems include uncertainty and noise, and sometimes the objective 

function is not explicitly known, performance estimation for solutions can only be obtained 

by multiple evaluations or simulations. It is especially difficult to reach global optima when 

the search space is large with multiple local optima.  In 2001 Charon and Hudry (2001) 

extended their noising method. The algorithm perturbs the solution space by adding random 

noise to the problem’s objective function values.  A stopping criterion is introduced in a 

precise way that gradually reduces the noise-rate. Prudius and Andradottir (2005) proposed 

two cooling schedule approaches for controlling the probability of moving to seemingly 

inferior points and used the state with the highest estimated objective function value obtained 

from all the previous observations. The difference between the two variants of the SA 

algorithm is the way of estimating the objective function values at the current and candidate 
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solutions in each iteration. Ling Wang and Liang Zhang (2005) proposed SA combined with 

hypothesis testing for stochastic discrete optimization problems, and demonstrated the 

effectiveness of the proposed approach by the simulation results based on stochastic 

numerical optimization problems. Meanwhile, the effects of simulated annealing and noise 

magnitude on the search performance have also been studied.  

 

1.3 Thesis outline 

The remainder of this thesis is organized as follows. In Chapter 2, we propose the simulated 

algorithms. Chapter 3 illustrates the procedure for finding the parameter set of the cooling 

schedule for SA and discusses some other properties of the proposed algorithms. Chapter 4 

describes the performance of simulated annealing in deterministic problems, metropolis 

procedure with noise, and stochastic problem with varying sample size.  Many numerical 

experiments are reported in this Chapter.  Chapter 5 presents a theoretical complexity 

comparison included with comparison of hybrid algorithm. Finally, some concluding remarks 

and possible future work are given in Chapter 6. 

 

1.4 Glossary 

Accept                   A move that changes the current state 

Annealing              The thermal process for obtaining low-energy states of a solid 

Cost                        The value of the objective function 

Downhill                In a minimization problem, when the change in cost of an accepted move     

                               is negative, the overall cost improves 
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Equilibrium            Indifference to previous states in a process, such that an independent   

                               sample can be drawn 

Hill-climbing           Deteriorating moves and lateral moves are accepted with some  

                                 probability 

Landscape              The solution space, where the height is the overall cost at a single point or   

                               state 

Neighborhood        All the possible states that could result after a single move 

State                        A single data point 

Temperature           The control parameter in simulated annealing which determines the  

                                probability of accepting a bad move. When the value is larger the  

                                probability is greater 

Uphill                     As a minimization problem, when the change in cost of an accepted move  

                               is positive, the overall cost worsens 

 

1.5 Notations 

This subchapter introduces vocabulary and notation. The following terms provide a reference: 

     Table 1. Notations 

SA Optimization Symbol 

State / Configuration Feasible solution iu  

Cost value Performance iz
 

State space / Configuration space Domain of objective function U  

Energy Objective function ),( yxZ  

Move class Neighbor )( iuN  
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In addition to the table above, noise refers to fluctuations, perturbations or small errors. 

Energy is the cost function that has to be minimized. A state is a set of values for the decision 

variables that represent one feasible solution to an optimization problem. We indifferently 

use energy and cost to designate the same thing.  

 

In this thesis, DETERM represents the SA algorithm applied to deterministic optimization; 

STOCHA represents the SA algorithm applied to stochastic optimization; VARYN 

represents stochastic problem with varying sample size. 
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CHAPTER 2 SIMULATED ANNEALING ALGORITHM 

2.1 The SA algorithm applied to deterministic optimization (DETERM) 

When using the simulated annealing algorithm, the first step is to define the solution space, 

or a range of feasible values for the decision variables which represent possible solutions for 

the optimization problem. Each solution has a specific cost value. The search starts from a 

randomly generated initial feasible solution. In order to choose potential moves to new 

solutions (new values for the decision variables) a neighborhood structure is defined in the 

vicinity of the initial or present solution. A potential move is then generated randomly from 

the neighborhood. To find a good solution we move from a feasible solution to one of its 

neighbors in accordance with a probabilistic criterion. The move is accepted if the value of 

the objective function decreases (for a minimization problem). Otherwise, the move is 

rejected only with some probability which depends on the difference of cost between the 

present and new solution and a controlling mechanism called the current temperature. It is 

this feature that prevents the method from becoming stuck in a local minimum. A cooling 

schedule is the method used to decrease the temperature which is one of the controlling 

parameters. As the temperature is decreased the probability of accepting a worse solution 

decreases. The performance of the SA algorithm strongly depends on the choice of the 

cooling schedule and the neighborhood structure. A small change in a combination of some 

variables can generate a neighboring solution with a different cost value. Ideas from ordinal 

optimization and statistical selection can be incorporated to help determine if a move should 

be made.  
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To describe the specific features of a simulated annealing algorithm, we need the following 

definitions and assumptions. This algorithm utilizes a cooling schedule with the constant 

decay parameterα that is chosen to suit the specific problem (where 0 < α < 1.0). 

 

Suppose we wish to find a solution that minimizes the objective function Z . Solutions that 

satisfy the constraints are called feasible solutions. Let Uui ∈ where U is the solution space; 

iz
 
is the cost (performance) related to a configuration or solution iu

. 
 A feasible solution with 

minimum cost value *z  is called an optimal solution *
u . i  is simply an iteration counter. The 

number of iterations I  needed to guarantee finding the global optimum is generally very 

large.  kT
 
is the temperature at time or iteration k . A candidate solution 1+iu

 
is generated by 

taking a random step in the neighborhood of iu . SA then compares the cost iz
 
and 1+iz

 
to 

determine whether or not to accept the move to 1+iu . A unique characteristic of SA is that it 

accepts not only better solutions but also worse solutions with some probability in order to 

escape local optimal points. The transition probability of accepting a worse configuration 

1+iu
 
is kii Tzz

e
/)( 1 −− + . In each iteration, the transition probability is compared with a uniform 

random number R  on the range [0, 1]. If the transition probability value is greater than or 

equal to the random number R , then the transition to the worse solution is accepted. 

Otherwise it is rejected. If it is rejected, another solution in the neighborhood will be 

generated and evaluated. The duration of each temperature level determines the number of 

iterations at a certain temperature. The temperature decreases during the search according to 
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a function known as the cooling schedule. The procedure terminates when a specified lowest 

temperature has been reached.  

 

The basic steps for SA when applied to a deterministic problem are as follows (assuming 

minimization): 

 

Step 1: Select an initial feasible solution 0u , Determine initial temperature initialT . 

             Tk = Tinitial; 

Step 2: Do while kT
 
> pauseT , where pauseT  is the stopping temperature.    

            Set ;1=i  

Step 3:  For i < I where I is the length of inside loop in which the temperature remains 

constant.  

              Step 4: Generate a new random solution 1+iu  with cost 1+iz from the neighborhood 

of the current solution iu with cost iz . 

               Step 5: Calculate ii zzz −=∆ +1  

               Step 6: If z∆ < 0 

                                     Then goto Step 8 

                           Else randomly generate R = Uniform (0, 1)  

               Step 7: If R  < kii Tzz
e

/)( 1 −− +  

               Then goto Step 8 

    Else reject 1+iu
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           Set  i = i + 1 

               Back to Step 3 

       Step 8: Accept 1+iu as present solution 

       Step 9: Set  i = i + 1 and goto Step 3 

Step 10: set kk TT ⋅=+ α1  and goto Step 2 

 

2.2 The SA algorithm applied to stochastic optimization (STOCHA) 

The above procedure describes the implementation of SA as applied to deterministic 

problems. It will now be extended to stochastic optimization. To achieve a good performance 

for stochastic optimization problems, 1) the evaluation for solutions should be reliable and 

not too time-consuming, 2) the SA cooling scheduling should be well designed, and 3) the 

number of repeated searches should be reduced to improve efficiency. Thus, we propose a 

modified SA algorithm for stochastic optimization. The strategy of choosing the initial 

temperature and neighborhood structure will be the same as for the deterministic approach, 

including the mechanism of accepting the candidate solutions and the transition probability. 

As before, each new configuration is randomly derived from the neighborhood of the old 

configuration. If the new configuration is better than the current configuration it is 

automatically accepted. Otherwise it is accepted with some probability using the same 

procedure as before.  

 

To obtain the performance for a given configuration of the decision variables for a stochastic 

problem, Wang and Wu (1999) used an average value of the cost function generated from a 
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number sample problem instances. The mechanism implemented for stochastic SA in this 

thesis is very similar to what they addressed. 

 

The modified algorithm is as follows: 

Step 1 to Step 3 identical to “Step 1 to Step 3” of deterministic algorithm. 

Steps 4: The cost 1+iz of the new configuration 1+iu  is estimated by taking an average of n 

samples (similarly for the cost iz  of the current solution iu ), or  

       
N

z

z

n

j

ij

i

∑
=

+

+ =
1

1,

1  , where 1, +ijz
 
is the cost value of the sample j, Nj ...1,0= , and N is a 

fixed sample size.  

Step 5 to Step 10 identical to “Step 5 to Step 10” of deterministic algorithm. 

 

Therefore, it is a very simple modification of the deterministic approach with the only change 

being the utilization of a number of samples to account for the noise in the response surface. 

The sample size N  remains constant throughout the SA process. 

 

2.3 Stochastic problem with varying sample size (VARYN) 

Despite the wide use of simulated annealing for solving deterministic optimization problems, 

until recently little effort has been spent on the use of SA for stochastic problems.  

Consequently little has been done regarding controlling the sample size to utilize for 

performance value evaluation in stochastic optimization problems. There are many ways to 

control the sample size. Andradottir (2005) advocated two simulated annealing algorithms 
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for noisy objective functions. In the first one, only observations obtained in the current 

iteration are used. The number of observations of the objective function values taken at the 

current and candidate solution is constant. The second method utilizes all observations 

obtained so far at these two points. The estimate of the objective function value is the average 

of all observations collected for the candidate move so far. In an attempt to improve the 

performance of SA a second method was developed in which the sample size utilized is 

varied. We decided to take a fairly simple approach where initially a single sample is taken, 

and then the sample size increases as the SA algorithm proceeds. 

 

The modified algorithm is as follows: 

Step 1:  Identical to initial algorithm. ;0=k  

Step 2:  Do while kT > pauseT , where pauseT  is the stopping temperature. 

;1+= kk  

  );1
)1/(

(2)( +
−

⋅=
NK

k
knSizeSample    Where K  is the total number of 

iterations that the outside loop will be executed (the number of times the temperature is 

changed) during the SA process. The number of iterations for the inside loop I does not 

change, and N is a fixed sample size.   

               

Step 3 to Step 10 unchanged. 
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CHAPTER 3 IMPLEMENTATION 

To compare the performance of the above methods, all three methods have been coded in 

C++, and run on a PC with a 166 MHz Pentium CPU. Since we are interested in comparison 

of the three methods, we eliminated the effects of other factors by choosing the same 

neighborhood structure and cooling schedule for all methods. However, we will discuss 

parameter settings before we start to test three algorithms with five 2-dimentional functions 

named F1, F2, F3, F4 and F5. The functions were chosen from very simple response surfaces 

(F1, F3) to much more complex response surfaces (F4, F5). The performances of the 

algorithms are compared based on 200 independent replications.  The figures representing 

the five response surfaces are provided in the Appendix. 

 

We evaluated the computational performance under a variety of SA control parameter 

settings for the basic application of SA to deterministic response surfaces. The primary 

objective in our numerical studies was to study the effects of different combinations of the 

parameters (initial and final temperatures, cooling schedules, etc), and neighborhood 

structures to determine reasonable approaches. For application to stochastic response 

surfaces we also experimented with durations of the inside loop (the amount of time to 

remain at a given temperature). After determining the values for each of the SA parameters, 

we experimented with different levels of noise in the response surface in an attempt to 

measure the effect of this noise on the performance of the algorithm. 
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3.1 Discussion of parameters chosen- DETERM 

When applied to a minimization problem, an optimal solution is a solution with the minimum 

possible cost for the feasible solution space of the problem. It is well known that SA is a 

good choice to efficiently find approximate solutions. Our interest lies in obtaining 

satisfactory answers to the questions such as how SA would perform on a given landscape 

with a given temperature decrement rule and a given neighborhood.  

 

As previously stated, one of the most important properties of simulated annealing is its hill 

climbing feature, which is achieved by accepting some inferior moves. Consequently, the 

likelihood of accepting worse moves is very important in evaluating the ability of simulated 

annealing to escape from local minimum. 

 

General problems associated with the implementation of SA include: 

1. How to choose the initial/pause temperature? 

2. What is the neighborhood structure to use? 

3. Determining when the annealing process stops? 

4. What are the interaction effects among parameters? How do they affect the 

performance of SA? 

 

First of all, we will focus on the choice of the initial temperature and some other properties of 

the acceptance ratio.  To allow simulated annealing to find good solutions, one has to 



www.manaraa.com

  

18 

 

 

carefully select the initial temperature. A classical and intuitive method is described in 

Kirkpatrick et al. 1983. It consists of selecting a temperature such that the acceptance ratio is 

approximately equal to a given value 0χ .  For the objective functions chosen to be tested in 

this thesis,
 0χ  is set to 0.9 at the Initial Temperature; 0χ  is set to 0.001 at the Pause 

Temperature. Using this type of rule, cycles are avoided and a good estimation of the 

temperature can be found for the corresponding objective function. 

 

We chose initialT
 
and pauseT  such that the probability of accepting a “hill-climb” equal to one-

tenth of the range of possible z values are equal 0.9 and 0.001 respectively. That is we solved 

TeP

10/Φ−

= for T, where Φ  is the range between the minimum and the maximum cost values 

and P is the probability of accepting a worse solution. (See Table2) 

 

Table 2. Parameters setting 

 F1 F2 F3 F4 F5 

The actual value z 0.992405 3.90E-06 -6.40764 -0.375016 -1.49841 

The range Φ  0.015195 50.3556 12.81206 0.758 2.92846 

The bound of x,y [-5,5] [-5,5] [-5,5] [0,82] [0,45] 

Neighborhood factor 0.5 0.5 0.5 4 2.25 

initialT  0.0144 47.8 12.16 0.72 2.78 

pauseT  0.00022 0.729 0.1854 0.011 0.0424 

0χ
 
Initial Probability 0.899855726 0.900012665 0.899998362 0.900074467 0.900018205 

0χ
 
Pause Probability 0.001000938 0.001000266 0.000997263 0.001016989 0.001001011 

 

The study of different types of neighborhoods confirms that a good neighborhood is crucial 

for SA to find good solutions. The neighborhood of the local search is defined by a difference 



www.manaraa.com

  

19 

 

 

of structures between the current solution and the solutions that can be reached by changing 

one or more elements in the current solution. The performance of SA substantially depends 

on the definition of the neighborhood and the move strategy.  The neighborhood structure 

utilized in the thesis is:  

1+iu ~ Uniform [ iu -σ , iu +σ ]     where 10/
2

1
Range⋅=σ . 

Range  is the difference between possible maximum and minimum values of the decision 

variables.  

  

As proposed by Fleicher (1993), α controls the rate of temperature decay and the search time. 

The smaller the value ofα , the faster the temperature declines. Choosing an appropriate 

value forα is linked to computation time, which also depends on the size and complexity of 

the function. Typically, the cooling schedule satisfies kk TT ⋅=+ α1  for all Ν∈k ; 0 < 1<α   

(Rutenbar, 1989). Moreover, 0lim =
∞→
T

k
. When applying SA to the five objective functions, 

we utilized α = 0.95 and α = 0.97. 

 

This acceptance probability strongly depends on the current temperature.  When the 

temperature is relatively high, the acceptance probability is high. As the temperature 

decreases, so does the probability of accepting a neighbor that degrades the cost function. 

Thus, the SA search process when the temperature is low works similar to a simple local 

search. Finally, the algorithm terminates when some specified stopping criterion is met -- e.g., 

when the Temperature is reduced to pauseT
. 
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During the application of SA, any time a move is not accepted, the previous point is restored. 

After a certain number of moves (inside loop), the temperature is decreased (outside loop) - 

thus decreasing the likelihood of accepting uphill moves. When no downhill (better) moves 

exist in the neighborhood, we have reached a local minimum and if at the same time the 

temperature is low, then we might get stuck in a valley from which we cannot escape.  Hill-

climbing, which provides the chance of moving to a worse point, gives simulated annealing 

the advantage over some other methods because of the possibility of escaping from a local 

valley in order to find global minima farther away. As the temperature decreases to pauseT , it 

is very unlikely that SA will allow a move to a worse solution therefore not unusual that you 

will become entrapped in a local minima *
u . 

 

Generally speaking, the temperature is used to scale the differences in height of the landscape. 

Raising the temperature flattens a rugged landscape by providing a greater willingness to 

accept inferior points (climb a hill). However, small irregularities on a smooth landscape are 

accentuated by lowering the temperature and therefore most likely only accepting moves that 

improve the cost (downhill moves). We will elaborate on these ideas in the following chapter.  

 

3.2 Parameters chosen - VARYN  

When comparing a fixed sample size approach to our approach where a variable sample size 

mechanism is utilized, we designed our experiments so that the total number of samples 

generated during the process is basically a fixed amount.  The number of times the outside 
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loop is executed (the temperature is changed) K and the fixed sample size N do affect the 

performance of VARYN Algorithm; therefore we examine the effects of changing K while 

keeping N  as a constant value. (Figure1) We see that as K  increases, the values of 

)(kn have smaller increments. A larger K  value causes the algorithm to divide the constant 

sample size into a proportionally greater number of parts. This trend is reflected in the graphs. 

Also, at higher values of K , the likelihood of having the same rounded n value for a two 

consecutive k  values increases significantly.   

 

);1
)1/(

(2)( +
−

⋅=
NK

k
knSizeSample
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Figure 1. Changing K while keeping N  as a constant value 

 

 

Figure 2. Changing N while keeping  K  as a constant value 
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CHAPTER 4 RESULTS AND COMPARISON 

4.1 Deterministic problem results (DETERM) 

To illustrate the results from the application of the SA methods given in the previous sections, 

extensive numerical experiments are carried out. SA parameter settings utilized are held 

constant for all the test problems. The choice of the initial parameters, cooling schedule, and 

neighborhood structure can have a significant impact on the performance of SA. 

Experimental comparisons on five different functions or response surfaces are performed. 

The search begins with a high temperature allowing a greater chance of accepting a “hill-

climb” and thus moving out of local minima. As we see, there is a higher probability of 

acceptance in the beginning, thus facilitating exploration of the search space; as the 

temperature decreases, the probability is reduced. The value chosen forα determines the rate 

at which the temperature is lowered. The choice for neighborhood size is also important. If 

the neighborhood is too small it may limit the ability of the process to sufficiently investigate 

the decision space U and/or decrease the probability of reaching the minimum value in a 

reasonable time. On the other hand, if the neighborhood is too large, then the process 

essentially performs a random search throughout U.  In this thesis, we set the neighborhood 

size such that the half-length of a neighborhood is equal to one tenth of the Range  

corresponding to the feasible design space for each objective function.  

 

The cooling schedule can have a significant impact on the quality of the solution; the 
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possibility of accepting a new solution depends on the relationship between z∆  and KT  

which is KT

Z

eP

∆
−

= . It means that the annealing process is able to make transitions to higher 

energy state with positive probability so as to escape from local minima.  As KT  decreases, 

the probability of the current energy state making a transition to an inferior state tends to zero.  

At colder temperatures, large uphill moves are unlikely to be accepted. As a lower 

temperature contributes to a lower transition probability, the end of the search has less chance 

of escaping local minima while in the beginning, the search is more likely to move out of 

local minimum solutions. Classically, the probability to accept bad moves (moves with 

increase in terms of cost) is high at the beginning to allow the algorithm to escape from local 

minimum.  Intuitively, if the temperature is decreased to zero at a suitably slow rate then the 

annealing process converges in an appropriate probabilistic sense to the minimum state. After 

experimenting with different temperature combinations on the five functions it was found 

that a choice of initial and pause temperatures such that the probability ( 0χ ) of accepting a 

“hill-climb” equal to one-tenth of the range of possible z values are equal 0.90 and 0.001 

respectively worked relatively well.  

 

We use “percent error” to evaluate the performance of SA in DETERM. The percent errors in 

the table are calculated as  

*

*'

z

zz
ErrorPercent

−
=  

Where 'z  is the actual best cost value found with SA and *z  is the true optimal cost value. A 

smaller percent error means the relative best cost value is closer to the true optimal cost value, 
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which means SA performs better in this objective function. Based on 40 independent runs, 

the average results found when applying SA to the four deterministic response surfaces can 

be found in Table 3.  We haven’t considered F2 here because the cost value of F2 is 

extremely small. 

 

Table 3. Average percent error of the best cost found in DETERM 

 Objective Function (DETERM) F1 F3 F4 F5 

 0.0010% 0.4997% 7.2721% 16.7406% 

 

As expected, the specific function itself has some influence on the performance of the 

annealing process. The response surface figures corresponding to objective functions can be 

found in the Appendix. For example, response surface F5 in which the response surface is 

very irregular resulted in an average percent error of 16.7406%.  This is much higher than for 

the simpler functions or smoother response surfaces such as F1 and F3 where the percent 

errors are less than 1% respectively. 

 

As would be expected, we found that the complexity of objective functions plays an 

important role in the performance of SA.  The response surfaces of F4 and F5 are pretty 

rough, which means they have multiple local minima. Correspondently, the plot of the 

performance of SA for F4 fluctuates, although it converges in the end; the plot of the 

performance of SA for F5 jumps up and down in the beginning, then it goes down suddenly. 

On the contrary, SA performs very well in the objective functions with simple smooth 

response surfaces such as F1 and F3. (See Appendix: Response surface figures corresponding 

to objective functions).   
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Figure 3. Representative plots of performance of SA applied in F1, F3, F4, and F5 
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The following general conclusions can be made regarding the application to the deterministic 

response surfaces. 

 

● The cooling schedule is important for efficient searches and good convergence 

characteristics.   

● Proper selection of the neighborhood structure is important to the performance of SA.  

● The mechanism of SA is based on a neighborhood search in which a probability function 

determines the transition from one solution to another. The magnitude of this probability 

depends in part on a temperature parameter that declines according to a cooling schedule.  

● Parameters set depend not only on the particular problem being solved but also on the 

particular instance being solved. 

● The temperature and the cost values should be of the same order of magnitude.  

● The complexity of the function is an important factor affecting the performance of SA. 

 

4.2 Stochastic problem results (STOCHA) 

The main purposes of the thesis are to examine the performance of SA when applied to 

stochastic response surfaces and to evaluate whether artificially adding noise to a 

deterministic response surface might improve the performance of SA for deterministic 

optimization problems.  We began with five deterministic response surfaces for which we 

could determine the true optimal performance.  Random noise was then artificially added to 

these same surfaces and again the SA algorithm was applied to examine its performance 

given that the true optimal value is known.  
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The method used to add noise to the response surfaces is as follows. Let ijz , be the j
th

 random 

sample generated from solution iu at the th
i  iteration; where nj ∈ , n is the fixed sample size. 

The random samples are generated from the current configuration randomly according to the 

uniform distribution. 

 

ijz , ~ Uniform [ iz - Φ⋅µ , iz + Φ⋅µ ], where µ is a noise factor 10 ≤< µ  and Φ is the range 

between the minimum and maximum cost values. 

 

The performance zi+1 of ui+1 utilized in the metropolis procedure is simply 

         
n

z

z

n

j

ij

i

∑
=

+

+ =
1

1,

1   

Aimed at the uncertainty in stochastic optimization problems, multiple independent 

evaluations will be used to provide reasonable performance estimation for solutions. Noise 

factors µ of 0.025, 0.05, 0.10 and 0.15 were utilized combined with sample sizes n of 1, 5, 10 

and 20 and randomly generated starting solutions. As expected, a simple examination of the 

plots of the results from making these various runs show that the performance of SA tends to 

improve as the noise decreases or the sample size increases. After making these preliminary 

runs we chose the following experimental design. We let the noise factor µ be 0.15 and 0.025; 

the inside loop I = 50 or 20; and α is fixed to be 0.97. So there are 4 groups of parameter 

combinations (noise, inside loop) utilized: (0.15, 50), (0.15, 20), (0.025, 50) and (0.025, 20). 

For each of the four functions 10 independent runs (different initial solutions) were made for 
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each possible combination or a total of 40 runs for each function. The result is illustrated in 

Table 4. 

 

Table 4. The average best value found for each objective function over 40 independent runs.  
 

F1  F2  F3 F4  F5  

Ave Z Actual Z Ave Z Actual Z Ave Z Actual Z Ave Z Actual Z Ave Z Actual Z 

0.99207 0.992481 -1.57715 0.14799 6.649201 -6.2781 0.36684 -0.35376 -1.38096 -1.33546 

 

Setting the parameters as Table 2 described in Chapter 3, we test the performance of SA in 

STOCHA with noise magnitude 0.025/0.15 and Inside Loop 20/50. Using 10 independent 

evaluations for performance estimation in each combination, the distributions of 40 

independent runs in STOCHA is illustrated in Figure4. 

 

Generally speaking, the plot of best average Z usually is under the true Z line; however, the 

plot of best actual Z is above the true Z line. (See Figure4)  On the other hand, as the noise 

decreases, best average Z and best actual Z tend to be closer to the true Z line. The results for 

every run were plotted and it was found that an I of 50 seemed to have better performance 

characteristics than an I of 20 in the objective function with simple response surface such as 

F1 and F3. ( I  is the parameter of inside loop)  
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Figure 4. The distributions of the best cost values in STOCHA 
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Again we used percent error to evaluate the performance of SA. The average results in 40 

independent runs found when applying SA to the response surfaces can be found in Table 5. 

The second column “The best Ave” represents the percent error corresponding to the average 

best cost value of the noisy samples; the third column “The best Act” represents the percent 

error corresponding to the actual best cost value; “The last Ave” represents the percent error 

corresponding to the average last cost value of noisy samples; “The last Act” represents the 

percent error corresponding to the actual last cost value. 

 

Table 5. Percent error comparisons in STOCHA- noise / Uniform Distribution 

Variance for The best Ave The best Act The last Ave The last Act 

F1 0.0351% 0.0077% 0.0377% 0.0402% 

F3 3.8887% 2.0217% 5.8659% 7.9913% 

F4 6.7005% 5.6680% 27.7352% 29.5970% 

F5 11.7828% 10.8746% 28.3280% 29.2526% 

 

The response surfaces become more complex as you move from F1 to F5.  As the response 

surface becomes more complex the percent error begins to increase dramatically, ranging 

from 0.0077% to 10.8746% in the best Actual Z. 

 

To evaluate the influence of the noise, we modified the STOCHA algorithm by changing the 

noise generated to a Normal distribution instead of a Uniform distribution.  

 

Let ijz , be the j
th

 random sample generated from solution iu at the th
i  iteration; where nj ∈ , 

n  is the fixed sample size.  ijz , ~ N [ iz , 2)
10

1
( Φ⋅ ], where Φ is the range between the 
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minimum and maximum cost values.   

 

The performance zi+1 of ui+1 utilized in the metropolis procedure is simply 

         
n

z

z

n

j

ij

i

∑
=

+

+ =
1

1,

1   

Percent error results are displayed as Table 6. Compared to Table 5, most of the percent error 

values in Table 6 are higher, particularly when STOCHA   is applied in F5.  

 

Table 6. Percent error comparisons in STOCHA- noise / Normal Distribution 

Variance for The best Ave The best Act The last Ave The last Act 

F1 0.0752% 0.0200% 0.0371% 0.0405% 

F3 7.3798% 2.9917% 4.0435% 4.0217% 

F4 7.1933% 8.4630% 16.5406% 23.1950% 

F5 19.2203% 20.1303% 49.0645% 53.7168% 

 

One final measure of performance is to examine at what point in the process SA located the 

best solution. For example, if the best solution found occurs at the 6900
th

 accepted point out 

of a total of 7000 accepted points, the percentage is 98.6%. A larger percentage would seem 

to indicate that the SA algorithm is doing a better job of converging at the end to a near 

optimal solution. The results are summarized in Table 7. 

 

Table 7. The average percentage of 40 data for 5 functions 

 F1 F2 F3 F4 F5 

Ave 77.8917% 70.9149% 83.2852% 38.5623% 69.2913% 

 

The average percentage of F4 is the lowest followed by F5.  This indicates that SA-STOCHA 
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performs worse for complex objective functions than for simple objective functions because 

of their irregular, rough response surface.  

 

The following general conclusions can be made regarding the application of the constant 

sample size algorithm to stochastic optimization: 

 

● SA performs well when applied to fairly simple stochastic functions but the chance of 

being trapped in the local minima increases as the function complexity increases.  

● The length of time spent at a given temperature (inside loop) can have an important effect 

on the performance of SA.  

● SA seemed to perform better on more complicated stochastic response surfaces than it does 

on more complicated deterministic response surfaces.  

● The average point at which SA found the best solution seems to indicate that the algorithm 

and/or the SA parameters need further modification in order to improve the convergence 

characteristics. 

 

In the stochastic problems, SA is not deterministic and will produce different samples each 

time they are run, even on the same problem. This is because of the probabilistic nature of 

accepting uphill moves and choosing moves. In particular, there is no guarantee of getting the 

same answer on multiple runs or even of getting precisely the optimum answer in any 

annealing algorithm.  
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4.3 Variable sample size problem results (VARYN) 

The same runs were made as for the constant sample size approach. In order to compare the 

variable sample size approach to the constant sample size approach, we wanted to keep the 

total number of samples taken approximately the same. The total number of samples taken 

depends on the total number of iterations M, where M = I·K, and I is the length of the inside 

loop, K  is the length of the outside loop.  By utilizing the calculation shown earlier for the 

sample size while performing the inside loop 

   );1
)1/(

(2)( +
−

⋅=
NK

k
knSizeSample  (Round-off) 

The expected number of samples taken is  

         )1
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And therefore )]([ knAve is N which will result in the same number of total samples. 

 

The average percent errors can be found in Table 8. Similar to previous results, as the 

response surface becomes more complex the percent error begins to increase dramatically, 

ranging from 0.0132% to 13.2768%. Table 9 shows the percent error of both the best solution 

found and also the percent error of the last iteration of the SA algorithm. There is a 

significant difference in most cases indicating that SA  is not converging to an optimal 
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solution at the end. 

 

Table 8. Percent error comparisons in VARYN 

Variance for The best Ave The best Act The last Ave The last Act 

F1 0.0331% 0.0132% 0.0305% 0.0357% 

F3 3.3962% 2.2794% 4.7116% 6.0004% 

F4 8.7857% 12.1820% 34.2097% 35.9689% 

F5 12.1788% 13.2768% 36.9082% 36.9473% 

 

Table 9 shows the comparisons of average percent errors corresponding to the two 

approaches for stochastic optimization. We found that the percent error for variable sample 

size is very similar to the percent error for fixed sample size for the simpler response surfaces 

but the variable sample size performed somewhat worse as the complexity increased (F4 and 

F5). We believe that this is a result of less stable performance at the beginning of the search 

process (early iterations where the sample size is quite small) when using the variable sample 

size approach. 

 

Table 9. Comparisons of percent error between STOCHA and VARYN 

 

Variance for 
The best Ave The best Act 

STOCHA VARYN STOCHA VARYN 

F1 0.0351% 0.0331% 0.0077% 0.0132% 

F3 3.8887% 3.3962% 2.0217% 2.2794% 

F4 6.7005% 8.7857% 5.6680% 12.1820% 

F5 11.7828% 12.1788% 10.8746% 13.2768% 

 

We use STOCHA algorithm and VARYN algorithm for solution performance estimation 

respectively. Using the same parameters, we test the performance of SA in VARYN with 

noise magnitude from 0.025 to 0.15 and Inside Loop is from 20 to 50. Using 10 independent 
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evaluations for performance estimation in each combination, the distributions of 40 

independent runs both in STOCHA and VARYN with the above parameters are illustrated in 

Figure 5. 

 

With regard to the objective functions with simple response surfaces, the distribution of the 

best cost values for VARYN is very similar to that for STOCHA. SA performs better with 

less noise or more inside iterations. Both BestAveZ-STOCHA line and BestAveZ-VARYN 

line are below the True Z line; Best ActualZ-STOCHA line and Best ActualZ-VARYN line 

are above the True Z line. Obviously, these four lines tend to converge to the True Z line as 

the noise decreases. The amplitude of fluctuation may differ in VARYN lines and STOCHA 

lines.  However, objective functions with complex response surfaces don’t match this pattern. 

Surrounding the central line True Z, both the BestAveZ line and the BestActualZ line jump 

up and down. 
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Figure 5. Comparisons between STOCHA and VARYN 
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The same general conclusions can be made regarding the application of the variable sample 

size approach as with the constant sample size approach with the following additions: 

 

● The early smaller sample sizes (which creates more noise) appear to increase the chance of 

being captured in local minima early in the SA process. Smaller sample size means higher 

deviation of the noise, which makes the response surface highly noisy.  

● The variable sample size algorithm becomes more conservative in terms of moving out of 

the local minimum due to the larger sample size taken at lower temperatures.  

 

4.4 Overall comparison of results 

It is interesting to note that for these particular functions SA did not perform as well on the 

stochastic response surfaces as it did for the deterministic response surfaces when the 

response surface was fairly simple, but actually performed better on the more complex 

response surfaces.  This provides some evidence that artificially adding noise may improve 

the performance of SA on more complex deterministic response surfaces. 

 

Table 10. Percent error of the best cost- Actual Z  

 F1 F3 F4 F5 

DETERM 0.0010% 0.4997% 7.2721% 16.7406% 

STOCHA 0.0077% 2.0217% 5.6680% 10.8746% 

VARYN 0.0132% 2.2794% 12.1820% 13.2768% 

 

● SA performs better for simple functions than for complex functions regardless of the type 

of optimization being performed (Table 10). 
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● For simpler functions (F1 and F3), SA performs best in deterministic optimization, and 

worst for stochastic optimization with variable sample size. 

● For those functions with more complex response surfaces (F4 and F5), SA performs the 

best in stochastic optimization with fixed sample size. 

● Artificially adding noise may improve the performance of SA on more complex 

deterministic response surfaces. 

● Since the landscape of a solution space may be hilly or smooth, how SA is cooled can have 

significant impact on the quality of the solution. If the cost function is really jagged and has 

really steep maxima or minima, the probability of SA finding them decreases significantly.  

 

It is obvious from Table 10 that DETERM performs considerably better in those examples 

than STOCHA and VARYN.  VARYN differs from STOCHA only in the way in which the 

noise samples of the solutions at the current and candidate solutions are obtained in each loop. 

In the varying sample size method, increase of sample size decreases the noise, while the 

latter method utilizes the constant sample size mechanism which tends to fix the size of the 

noise.  A numerical example has been provided that documents the performance of our 

approaches. The reason why VARYN performs worse than STOCHA in the beginning of the 

search is that the smaller sample size results in bigger variance and hence, the objective 

functions are initially very noisy. But as the search progresses, VARYN becomes more 

conservative in terms of moving to worse points because better candidates become available 

and the temperature values are much lower.  
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Generally speaking, when SA is applied to some complicated function there is a possibility 

that the solution will not be globally optional. However, the solution will usually be better 

than the standard local optimization algorithm. It should also be noted that SA might not 

always or, in some cases never, find the optimal solution to a given problem because SA does 

have a random property.   
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CHAPTER 5 HYBRID ALGORITHM 

5.1 Hybrid algorithm introduction 

Metaheuristics have gained considerable attention and have experienced remarkable growth 

over the past decade. Simulated annealing (SA) and genetic algorithms (GA) are among the 

most popular metaheuristics, and each of them has advantages and improvements.  SA is a 

simple algorithm which takes a long time to reach the desired solution because of the 

annealing process. GA is based on natural genetic and evolutionary mechanisms that 

replicate the principles of population genetics, selection and inheritance. GA is more 

complicated but it takes less time than SA. The performance of these heuristics can be further 

improved if used in combination with an application-specific procedure. The work presented 

in this chapter has evolved out of the results of the experiments carried out employing SA 

and GA, which was aimed at improving the design of SA algorithms.  

 

Table 11. Notations-Hybrid Algorithm 

Hybrid Algorithm Symbol 

Current Population kU
 

A group of chromosomes in the 
th

k  population kju ,  

The fitness corresponding to one chromosome ,j k
Fitness

 

Initial Temperature initialT  

Pause Temperature pauseT  

The length of inside loop I  
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5.2 Hybrid algorithm implementation 

In this section, we propose a hybrid method that appends the Genetic Algorithm to SA, state 

its performance and discuss the importance of this result. The proposed GA-SA method has 

the benefits of both GA and SA. This hybrid technique utilizes the advantages of SA to 

escape local minima and at the same time it improves the performance of the search by 

parenting, and performing crossover and mutation. Our approach consists of three phases. 

Initialization is the first phase, where the parameters of the algorithms are specified. By 

reducing the number of solutions in the search space, it starts from a relatively good 

candidate solution. Similar to GA, each solution is represented by binary and integer strings. 

Second, there is the actual search phase, that is, the usual iteration of the genetic algorithm 

selection, crossover, and mutation operators. In particular, we use a selection procedure to 

first quickly filter out inferior solutions and then determine the best solution by carrying out 

additional runs for the remaining solutions. The alternatives generated by the GA search are 

evaluated using ranking and selection. Finally, the search terminates and returns to the 

inside/outside iteration of SA.  A pseudo-code for the Hybrid algorithm is presented below. 

 

Step 1: Generate a random population kU
 
and a group of chromosomes kju ,  

with
 ,j k
Fitness , 

               kkj Uu ∈,    ( Jj ∈ , J  is the number of chromosomes) 

             Set kU  = 0U
   

where 0U
 
is an initial population  

Step 2: Determine initial temperature initialT . 

Step 3: Do while kT
 
> pauseT , where pauseT  is the stopping temperature.    
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            Set ;1=i  

Step 4:  For i < I where I is the length of inside loop in which the temperature remains 

constant.  

Step 5: Generate children 1, +kju with , 1j k
Fitness +  from parents kju ,  by using three operators. 

                         Step 5.1 Reproduction 

                         Step 5.2 Crossover 

                         Step 5.3 Mutation  

Step 6: Compare children’s fitness , 1j k
Fitness + to parents’ fitness ,j k

Fitness  

            ε  = , 1j k
Fitness + - ,j k

Fitness  

Step7:  If (ε  <= 0)  Or  Random(0,1) <= kT
e

ε−

 

Then the new population 1+kU  replace kU  

          Else reject 1+kU
; 

Step 8: Set  i = i + 1 and goto Step 4 

Step 9: set kk TT ⋅=+ α1  and goto Step 3 

 

An excellent explanation of how reproduction, crossover and mutation are performed in 

genetic algorithms can be found in Goldberg (1989). We used the same approach in our 

implementation. 

 

The main differences between the hybrid algorithm and regular SA algorithm are the 

following: 
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● Instead of the original neighborhood strategy in SA, the next solution is generated from the 

current population by implementing reproduction, parenting and mutation in hybrid 

algorithm.  

● The acceptance of new chromosomes is determined by the annealing process and becomes 

a part of the next population. 

 

5.3 Hybrid algorithm results 

In this chapter, we use the genetic algorithm together with simulated annealing to develop a 

system for simulation optimization.  The algorithm has been tested on a simple objective 

function with 2 variables.  (See Figure 6) 

 

Figure 6. Response surface corresponding to the objective function 

 

 

The results are averaged over 50 runs, where ‘Ave Mean Best’ stands for the average mean 

best function value obtained in the last generation and ‘Ave Std Ave’ indicates average 

standard deviation. First, we changed the population size while keeping other parameters as 
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fixed values. We found that Average standard deviation tends to decrease as Population Size 

goes up. (Table 12, Figure 7) 

 

Table 12. Changing population size  

Population Size Ave Best Value Ave Mean Best Ave Std Dev 

100 66.836 57.456 12.517 

200 66.836 55.205 11.873 

300 66.836 57.018 10.284 

400 66.836 54.915 11.688 

500 66.836 55.642 10.263 

600 66.836 55.614 11.026 

700 66.836 55.343 10.581 

800 66.836 55.483 10.863 

900 66.836 55.942 10.335 

1000 66.836 56.314 9.625 

 

Figure 7.  Changing population size 
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Then, we changed the number of generations while keeping the population size at 100. The 

average mean tends to decrease as the number of generations increases.  So as you increase 

the number of generations, the hybrid algorithm performs better, though the average best 

value doesn’t change. (Table 13) 

 

Table 13. Changing the number of generations 

Generations Ave Best Value Ave Mean Best Ave Std Dev 

1000 66.836 57.456 12.517 

2000 66.836 55.815 12.179 

3000 66.836 55.252 9.563 

4000 66.836 56.409 13.300 

5000 66.836 56.261 11.242 

 

Table 14 demonstrates that Ave Mean Best decreases as the probability of mutation increases 

from 0.1 to 0.25. The most interesting thing is Ave Std Dev is only 6.705 when the 

probability of mutation is 0.1, but it tends to increase to around 12 as the probability of 

mutation is greater than 0.15. This shows that the probability of mutation does affect the 

performance of the hybrid algorithm. Table 15 shows the results while changing the 

probability of crossover. The probability of crossover has less impact on the performance of 

the hybrid algorithm.  

Table 14. Changing the probability of mutation 

Probability of Mutation Ave Best Value Ave Mean Best Ave Std Dev 

0.1 66.836 57.978 6.705 

0.15 66.836 55.815 12.179 

0.2 66.836 54.332 11.756 

0.25 66.836 53.477 12.198 
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Table 15. Changing the probability of crossover 

Probability of Crossover Ave Best Value Ave Mean Best Ave Std Dev 

0.7 66.836 58.657 5.846 

0.8 66.836 57.978 6.705 

0.9 66.836 59.869 9.612 

0.95 66.836 56.970 8.533 

 

Compared to the performance of SA in deterministic problems, the hybrid algorithm reaches 

the optimum value more rapidly.  However, the hybrid algorithm needs more memory to 

store the data, which means hybrid algorithm is more complicated than SA. The 

computational results give some indication of the effectiveness of the hybrid approach. 

However, the work presented here is still in its infancy and ongoing. Future work includes 

searching the effects of SA parameters on the solution quality to improve the solution and 

running time of the algorithm.  

 

Figure 8. Representative plot of performance of hybrid algorithm applied in this objective 

function 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

In this study the application of simulated annealing to stochastic optimization was examined. 

We proposed two adaptations to the standard simulated annealing in conjunction with a noise 

mechanism. In addition to a straightforward application in which a constant sample size was 

utilized, we also examined a modification in which the sample size varied. Sets of five 

different response surfaces of varying complexity were used to evaluate the performance of 

SA. The comparisons of the proposed methods and the conventional SA clearly demonstrate 

that the complexity of the cost function features does affect the performance of SA to a 

certain extent. The conclusion is supported by our statistical analysis. As would be expected 

the performance declined as the complexity of the response surface increased. In general the 

constant sample size approach outperformed the variable sample size approach. A somewhat 

surprising observation was that as the response surface complexity increased SA seemed to 

work better on stochastic response surfaces than on deterministic response surfaces.  

Therefore it appears that artificially adding noise may improve the performance of SA on 

more complex deterministic response surfaces. 

 

Due to the fact that there is no general SA algorithm that works well for complex functions, 

there is still considerable room for further research. Most results that point in that direction 

are based on numerical evidence and further research direction may consist in introducing 

some modifications and studying the convergence of the algorithm in stochastic optimization 

problems. It will focus on how to best search for the optimal solution in the presence of noise. 
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The algorithm allowing the selection of the initial temperature that is compatible with a given 

acceptance probability of all transitions is now under study. Investigating this balance is an 

important future research topic. 

 

In addition to performing more tests on similar response surfaces, we aim at testing our 

algorithm with some other classes of problems such as n-dimensional cost functions (n>3). 

Further work also should be devoted to additional modifications to the SA algorithm that 

might improve its convergence characteristics when applied to this type of optimization. As 

this research is carried out, it is important to take into account the concerns of computational 

efficiency.   In order to demonstrate the performance of the hybrid algorithm we have 

considered only deterministic problems as a test bed. Another direction of potential interest 

may be the application of the hybrid algorithm to various problems. For example, extending 

the hybrid algorithm to a noisy environment is another research goal. 
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APPENDIX 

Response surface figures corresponding to objective functions  
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